Cramer-Rao lower bound: an example

Suppose that $\underline{X}=(X)$, a single observation from $\operatorname{Bin}(m, p)$, where m is known. The pmf is given by

$$
f(x ; p)=\binom{m}{x} p^{x}(1-p)^{m-x} \quad \text { where } \quad x=0,1, \ldots, m
$$

Note that the range of X depends on m, but not on the unknown parameter p. Also, the sample size is $n=1$.

Cramer-Rao lower bound

Since the range of X does not depend on the unknown parameter p which we wish to estimate, we can proceed to compute and use the Cramer-Rao lower bound for unbiased estimators:

$$
\begin{aligned}
\log f(x ; p) & =\log \binom{m}{x}+x \log p+(m-x) \log (1-p) \\
\frac{\partial}{\partial p} \log f(x ; p) & =\frac{x}{p}-\frac{m-x}{1-p}=\frac{x-m p}{p(1-p)} \\
\left(\frac{\partial}{\partial p} \log f(x ; p)\right)^{2} & =\frac{(x-m p)^{2}}{p^{2}(1-p)^{2}} .
\end{aligned}
$$

Thus,

$$
E\left(\left(\frac{\partial}{\partial p} \log f(X ; p)\right)^{2}\right)=\frac{E(X-m p)^{2}}{p^{2}(1-p)^{2}}=\frac{\operatorname{Var}(X)}{p^{2}(1-p)^{2}}=\frac{m}{p(1-p)}
$$

It follows that for any unbiased estimator, $g(\underline{X})$, for p, we have

$$
\operatorname{Var}\left(g(\underline{X}) \geq \frac{1}{1 \cdot \frac{m}{p(1-p)}}=\frac{p(1-p)}{m} .\right.
$$

Alternatively, we can compute the Cramer-Rao lower bound as follows:

$$
\frac{\partial^{2}}{\partial p^{2}} \log f(x ; p)=\frac{\partial}{\partial p}\left(\frac{\partial}{\partial p} \log f(x ; p)\right)=\frac{\partial}{\partial p}\left(\frac{x}{p}-\frac{m-x}{1-p}\right)=\frac{-x}{p^{2}}-\frac{(m-x)}{(1-p)^{2}} .
$$

Thus,

$$
E\left(\frac{\partial^{2}}{\partial p^{2}} \log f(X ; p)\right)=\frac{-E(X)}{p^{2}}-\frac{(m-E(X))}{(1-p)^{2}}=\frac{-m p}{p^{2}}-\frac{(m-m p)}{(1-p)^{2}}=\frac{-m}{p(1-p)}
$$

It follows that the Cramer-Rao lower bound is given by

$$
\frac{1}{-n E\left(\frac{\partial^{2}}{\partial p^{2}} \log f(X ; p)\right)}=\frac{1}{-1 \cdot \frac{-m}{p(1-p)}}=\frac{p(1-p)}{m}
$$

as above.

Comparing estimators

Consider the estimator $g_{1}(\underline{X})=\frac{X}{m}$.

$$
E\left(g_{1}(\underline{X})\right)=\frac{E(X)}{m}=\frac{m p}{m}=p
$$

so $g_{1}(\underline{X})$ is an unbiased estimator of p. Is it the most efficient unbiased estimator for p ? To answer this question, we compute the variance of g_{1} and compare it to the Cramer-Rao lower bound which we calculated above.

$$
\operatorname{Var}\left(g_{1}(\underline{X})\right)=\operatorname{Var}\left(\frac{X}{m}\right)=\frac{\operatorname{Var}(X)}{m^{2}}=\frac{m p(1-p)}{m^{2}}=\frac{p(1-p)}{m}
$$

Since $\operatorname{Var}\left(g_{1}\right)$ equals the Cramer-Rao lower bound, we can conclude that $g_{1}(\underline{X})$ is the most efficient unbiased estimator for p.

Now consider the estimator $g_{2}(\underline{X})=\frac{X+1}{m+2}$.

$$
E\left(g_{2}(\underline{X})\right)=\frac{E(X)+1}{m+2}=\frac{m p+1}{m+2} \neq p \quad(\text { except when } p=1 / 2)
$$

So g_{2} is a biased estimator with

$$
\operatorname{bias}\left(g_{2}\right)=E\left(g_{2}(\underline{X})\right)-p=\frac{m p+1}{m+2}-p=\frac{1-2 p}{m+2}
$$

To compare the performance of g_{2} with the performance of g_{1}, we must first compute the mean square error of g_{2} :

$$
\operatorname{Var}\left(g_{2}(\underline{X})\right)=\operatorname{Var}\left(\frac{X+1}{m+2}\right)=\frac{\operatorname{Var}(X+1)}{(m+2)^{2}}=\frac{m p(1-p)}{(m+2)^{2}}
$$

Thus,
$\operatorname{MSE}\left(g_{2}\right)=\operatorname{Var}\left(g_{2}\right)+\left(\operatorname{bias}\left(g_{2}\right)\right)^{2}=\frac{m p(1-p)}{(m+2)^{2}}+\frac{(1-2 p)^{2}}{(m+2)^{2}}=\frac{1}{(m+2)^{2}}\left(1+(m-4) p-(m-4) p^{2}\right)$.

We can compare the (relative) efficiency of g_{1} and g_{2} by comparing the graphs of $\operatorname{MSE}\left(g_{1}\right)$ (which is just the variance of g_{1}) and $\operatorname{MSE}\left(g_{2}\right)$ as functions of p.

Exercise: Fix $m=10$ and sketch the graphs of $\operatorname{MSE}\left(g_{1}\right)$ and $\operatorname{MSE}\left(g_{2}\right)$ as functions of p. Also, determine the values of p for which g_{2} is more efficient than g_{1}.

